On Homomorphisms from Ringel-hall Algebras to Quantum Cluster Algebras

نویسندگان

  • XUEQING CHEN
  • MING DING
  • FAN XU
چکیده

In [1],the authors defined algebra homomorphisms from the dual RingelHall algebra of certain hereditary abelian categoryA to an appropriate q-polynomial algebra. In the case that A is the representation category of an acyclic quiver, we give an alternative proof by using the cluster multiplication formulas in [9]. Moreover, if the underlying graph of Q is bipartite and the matrix B associated to the quiver Q is of full rank, we show that the image of the algebra homomorphisms is in the corresponding quantum cluster algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Cluster Characters of Hall Algebras

The aim of the present paper is to introduce a generalized quantum cluster character, which assigns to each object V of a finitary Abelian category C over a finite field Fq and any sequence i of simple objects in C the element XV,i of the corresponding algebra PC,i of q-polynomials. We prove that if C was hereditary, then the assignments V 7→ XV,i define algebra homomorphisms from the (dual) Ha...

متن کامل

Green Formula in Hall Algebras and Cluster Algebras

The objective of the present paper is to give a survey of recent progress on applications of the approaches of Ringel-Hall type algebras to quantum groups and cluster algebras via various forms of Green’s formula. In this paper, three forms of Green’s formula are highlighted, (1) the original form of Green’s formula [Gre][Rin2], (2) the degeneration form of Green’s formula [DXX] and (3) the pro...

متن کامل

Green’s Formula with C-action and Caldero-keller’s Formula for Cluster Algebras

It is known that Green’s formula over finite fields gives rise to the comultiplications of Ringel-Hall algebras and quantum groups (see [Gre], see also [Lu]). In this paper, we prove a projective version of Green’s formula in a geometric way. Then following the method of Hubery in [Hu2], we apply this formula to proving Caldero-Keller’s multiplication formula for acyclic cluster algebras of arb...

متن کامل

Finite Dimensional Algebras, Quantum Groups and Finite Groups of Lie Type

We shall discuss generic extension monoids associated with finite dimensional (basic) hereditary algebras of finite or cyclic type and related applications to Ringel–Hall algebras, (and hence, to quantum groups). We shall briefly review the geometric setting of quantum gln by Beilinson, Lusztig and MacPherson and its connections to Ringel– Hall algebras and q-Schur algebras. In the second part ...

متن کامل

Bgp-reflection Functors and Lusztig's Symmetries: a Ringel-hall Algebra Approach to Quantum Groups

According to the canonical isomorphisms between the Ringel-Hall algebras (composition algebras) and the quantum groups, we deduce the Lusztig's symmetries T 00 i;1 , i 2 I, by applying the Bernstein-Gelfand-Ponomarev reeection functors to the Drinfeld doubles of Ringel-Hall algebras. The fundamental properties of T 00 i;1 including the following can be obtained conceptually, (1). T 00 i;1 induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015